
1

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years I have refocused on the
problems of transforming and modernizing legacy ABL applications.

2

Here is our agenda for today. First I am going to talk a little about OERA and
what it means. Then talk about Subsystems in relationship to that meaning.
And, then look at some mechanisms.

3

First, let’s talk a bit about OERA and what it really means.

I am sure that you have all seen one or more versions of a diagram of OERA
like this. This diagram introduced the OpenEdge community to the idea of
constructing an application in layers where each layer had a single uniform
purpose, although it might have more than one subject matter.

4

The diagram has appeared in a number of different flavors, providing
different emphasis. The one in the lower left was an early and simple
example, which nevertheless recognized that layers might have
infrastructure that sat off to the side of all layers. The one to the upper right
breaks this down into more categories and brings emphasis to a common
platform. But, all have a clear sense of partitioning based on the type of
service provided.

5

So, what is the point of layers? Some people might be tempted to think that
it was about deployment, e.g., what one might put on either side of an
AppServer boundary. Well, it can have that implication in some cases, but it
is very common in ABL for multiple layers, possibly even all of them, to
reside in a single AVM. It is also rare to change the location of components
after the original architectural decisions. So deployment is not the main
point.

6

For me, the main point of writing an application in layers is that everything in
any given layer is about the same kind of thing and for that to be as separate
as possible from other layers. So, if there is a class that is about interacting
with the database, it belongs in the data access layer. Whereas, if the class
is about business logic, it belongs in the business logic layer. These two
should be as separate as possible. Unlike the Big Ball of Mud (BBOM)
designs which were characteristic of legacy ABL in which UI, logic, and data
access were all mushed together in one program.

7

But, what is the virtue of separation you might ask? Separation localizes
change and insulates other components from change. If one makes a
change in how some part of the Customer is stored, e.g., putting the Address
in a separate table, that change only impacts the data access component
and needs not impact the business logic or UI components in any way. This
is most true when there is a natural correspondence between classes in the
application and entities in the problem space since changes in the program
are likely correspond to changes in our model of the problem space.

In this talk I will be using the term “problem space” to refer to the real world
entities and behavior which the application is trying to model. This is not
necessarily the real world in all its possible complexity, but our view of it that
we have defined as the problem we are trying to solve.

8

In formal terms, this leads us to one of the central tenets of object-oriented
programming – separation of concerns. This means that an application
should be divided into components, any one component is an expression of
a specific “responsibility”, some coherent combination of necessarily related
attributes and behavior. Also, there should be as little overlap in functionality
between one component and the next. If the responsibility of a particular
component is managing the data access for Customers, then nowhere else
should there be data access for Customers and the only thing in that
component should be the functionality required to access customer data.
Each class should be about one thing and should contain all of the attributes
and behavior related to that thing. Each class should be strongly separated
from other classes. This concept is what is meant by the term Encapsulation.

9

10

So, with this background, let’s see what this notion of Separation of
Concerns does to our perception of layers.

The Separation of Concerns one achieves with layers is a separation by
function type. This is certainly valuable for providing flexability in
deployment, isolation of change to a single component, and freedom to
make changes in technology. But, it is not the only separation we want in
our application.

11

The other separation we want is by Subject Matter where the divisions of
Subject matter are those we find in the problem space, not in our code. In
Object-Oriented Analysis and Design, the core principle is that a class in the
design will correspond to a specific entity in the problem space. Often, we
will organize closely interacting classes into Packages. Ideally, this Package
will also correspond to a natural set of entities in the problem space, but this
may not always be true.

Consider example

12

At a higher level of grouping we have Subsystems. A good Subsystem will
always implement a unique body of Subject Matter which can be easily
identified. It will be internally cohesive, i.e., all the classes it contains will be
about closely related subject matters. It will be cleanly separated from
anything outside the system.

Consider example

13

Subsystems and layers are similar in purpose, but are different in that layers
are about functional roles in the architecture and subsystems are about
subject matter subdivisions. Both are cohesive internally. Both are
separated externally. Both hide their inner workings from the outside. Both
should be provided with a simple interface and all interaction should be
through that interface. And, both allow one to change the interior in
implementation or technology without impacting the interface.

Consider example

14

One identifies Subsystems through a process called Application Partitioning,
i.e., the logical decomposition of the problem space into cohesive units.
Application Partitioning is often a combination of top down and bottom up
processing -- identifying broad categories from the top, identifying classes to
go with individual problem space entities from the bottom, and resolving the
grouping into Subsystems as the two meet in the middle. Layers tend to be
defined by the architectural structure and are independent of the specific
subject matter of the application. Subsystems, of course, are unique to the
application. Related applications may have some similar Subsystems, but
the content of each will be defined by the specifics of the application.

Consider example

15

In identifying Subsystems, keep your attention on the problem space, not the
computing space. Look for natural units. Look for entities which are strongly
related to each other. Look for entities which work together to accomplish
some larger purpose. Look for boundaries of possible separation, especially
those where there may be some natural interface such as a document or
message which controls the interaction.

16

17

Now let’s look at some of the mechanisms by which we help support
Separation of Concerns.

So, having decided that separation of concerns is important for both layers
and subsystems, what mechanisms are we going to use to implement this
separation and still allow the components to work together.

Remember that separation is essential if we want to be able to change
individual components without changing everything they are connected to.
We can need to make changes because of changes in problem space
requirements or because we change our ideas about architecture … and we
will make such changes … and it is separation that will allow us to make
them individually on the affected component and not have to fiddle with
everything that component is connected to.

18

Everything starts with the right design. Break down the problem space into
the right subsystems and you will have a simple, natural flow of simple
messages between them. Break it down incorrectly and you will find yourself
adjusting left and right to try to make things work. If you find yourself doing
that, it is time to revisit the design.

19

So, what do these simple, natural interactions look like? We want the
interactions to be messages, not calls, i.e., A is passing some information to
B and it is up to B to decide what it needs to do with it, not A commanding B
to do something. Typically, these messages are about events, i.e., that
something new has happened. Each subsystem should have a published
interface and all interaction should be via that interface. We should never be
reaching down into another subsystem to use a component independent of
the interface because that implies that we have knowledge of how the other
subsystem is implemented.

20

This focus on messages and events is summarized by “This happened”,
rather than “Do this”. “This happened” is a subsystem reporting about
something that happened and it is letting others know in case they are
interested. “Do this” is one subsystem telling another subsystem what to do
and often implies knowing not only what the other subsystem can do, but
how it is going to do it. Events don’t presuppose knowing what the other
subsystem will do with the information. Obviously, some messages are
going to look a lot like requests, but they certainly shouldn’t presume how
the other subsystem will do its job or they will be coupled.

Note that connections between layers will often not have quite the same
degree of separation. A business logic layer is going to ask a data access
layer for a particular set of information. It still should have no presumption
about how the data access layer will do that including whether the data is
even local.

21

So, what do I mean when I say “message”? How do I send one?

How depends on deployment. If local to the AVM, it can be as simple as a
method call. If the other subsystem is remote, then we need some kind of
message passing system.

Remember that the communication is always interface to interface, not
reaching directly in to the classes within.

And, a message contains only data, not behavior.

22

Here is an example of what we mean by a property object – a class which
has properties and nothing else. We can put data in, transfer the object, and
take data out and that is all.

Note, property objects are the exception to the rule of “you make it; you
destroy it” because it is the recipient who knows when they are done with the
object.

23

Using property objects provide some advantages and disadvantages over
simple parameters. The method signature is simple and remains
unchanged when the contents of the property object change. It is possible
for multiple consumers to use the same property object, even though they
may not need even value within it. One wants to be careful to not overdo
this, of course. There is some overhead for packing and unpacking. It is
easy to convert property objects to remote messaging and will be even
easier when we get better reflection. If we make property objects a child of a
superset object, the superset object can contain message type and routing
information which is accessible to an intermediary without having to be
aware of the implementation details of the specific object.

Again, property objects contain no behavior … unless we decide to provide a
way for them to serialize themselves before PSC gets around to doing this
for us.

24

Another approach is to use a JSON message. This could be XML, but these
days JSON seems more interesting because it is more broadly useful and
less verbose. One gets a JSON message simply by converting the
individual data elements to a JSON string. Again, we have a consistent
message signature because it is just a string. Because it is just data, there
is no dependence on either side for implementation and JSON strings can
be consumed by many technologies. It is particularly convenient for data in
temp-tables.

25

To illustrate how simple this can be, if we have a buffer with Customer data
in the sending program, serializing this to a JSON string is literally a one line
instruction. Likewise, reading the JSON string back into a buffer on the
other end is also one line. If we want to parse the fields in the JSON string
independently, of course it takes a few more instructions.

26

One of the goals of Separation of Concerns is to avoid one subsystem
knowing too much about the internal implementation of another subsystem
because that creates dependencies. If, for example, if one subsystem
makes direct calls into the methods of internal classes of another subsystem
then one has created a dependency where one can’t change the internal
implementation of that subsystem without breaking the other subsystem
which depends on it. Within a subsystem we can accept this dependency,
although we still strive for encapsulation, but not between subsystems.

The solution is for all interaction with a subsystem to be through an interface
which handles all messages in and out. This interface can route the
message to the appropriate internal class based on the type of message.
How is this managed?

27

So, let’s look at how we might implement this approach. We would start by
defining a parent class for all messages. This has two properties,
targetDomain and targetService. These are set in the constructor. The
superclass Incident contains the definition for type which is not an immediate
part of this discussion.

All messages will inherent from this superclass. In creating all message
objects, we will set these three values.

We can then send the message to a general purpose dispatcher who can
interrogate the destination domain by inquiring of the superclass. It can then
route the message to the subsystem appropriate for that domain. This way,
the sender doesn’t even need to know the name of the other subsystem and
doesn’t have to interact with it directly.

28

Then, in the interface of the receiving domain, we have a method to receive
the message, which again takes it in as the superclass. It will then define
variables for each of the possible subclasses and …

29

Select on the service in the Message base to identify the type of action
required. It then casts the superclass into the specific message type and
calls a small method with that object that implements the desired action by
calls to the classes of the subsystem as needed.

30

Let me say a bit more about the Dispatcher I mentioned.

31

32

33

34

35

36

37

38

Here are some links for more information.

39

40

