
1

Let me begin by introducing myself. I have been a Progress Application
Partner since 1986 and for many years I was the architect and chief
developer for our ERP application. In recent years I have refocused on the
problems of transforming and modernizing legacy ABL applications. This
implies needing to understand what the existing legacy application is doing
so that we can change or replace it with confidence. Today I am going to tell
you about an open source tool I have been building.

Many of you will know James Palmer as Cringer from on-line forums like
PSDN and ProgressTalk. James is an Application Developer and DBA for
the Inenco Group, a company that assists companies with energy
procurement and performance. They have a large Progress application
which is one of the test beds we are using for ABL2DB.

James put in a lot of work on this project as my primary test site outside of
my own code from my old Integrity/Solutions ERP package.
Integrity/Solutions provided many interesting challenges and the Inenco
code provided a whole new set. Happily, I was able to make changes to
ABL2DB reasonably quickly to accommodate many of those differences and
the issues that remain deal mostly with expanding Proparse to cover the
needed syntax, which John Green has been helping with.

2

Here is our agenda for today. First we are going to talk a little bit about the
background, then look at four specific examples where ABL2DB can help us
fix issues with our applications.

3

First, a little bit about the problem which the tool is intended to address.

I’m sure that most of you who have been around for a while can identify the
problem … large legacy ABL systems, often millions of lines of code,
documentation which could be written on three napkins, and typically a
reliance on some old hand who has been around for years to help everyone
else figure out where things are and how they work … until he or she isn’t
there any more.

Moreover, often the code does not conform to what one would consider
modern best practice … or even best practice at any time in the history of
ABL in some cases. No matter what you think someone would never do,
chances are that somewhere someone has done precisely that.

4

And we all know that when we make changes, we should understand what
we are doing before we start … what will be impacted by any given change.
But, without documentation, there isn’t really any way to do that and as a
result we make mistakes. Those mistakes often have a big impact, even on
running the business. Not knowing the impact, we don’t really even know
what to test — so the problem can be in some area unrelated to where we
did the work. In the worst cases, the cost impact to business operations
exceeds all of the technical expense invested in making the original change
and in repairing the damage.

5

To make changes safely we need to understand how all parts of the code
interact with other parts of the code and how all parts of the data are
impacted by all parts of the code. We don’t necessarily need to know
everything all the time, but we do need to know anything relevant to the
current project, so somewhere we need to have that knowledge. Having this
information at your fingertips is a whole different world from having to figure
it all out by reading code.

6

7

So, let’s look briefly at the tool I have created to address this problem area.

Which brings me to ABL2DB, my own offering for tackling this problem. It is
a tool which analyzes existing code and schema and creates a database of
information extracted from that code and schema in a form suitable for easy
reporting and analysis. It is open source and has been designed to be highly
modular, highly adaptable, and easily extended. There are some
components which, by necessity, need to be tailored to the individual code
base, but these have been isolated, identified, and packaged for easy
customization. As you will see, the current version is already collecting a
substantial amount of information and the roadmap is in place for extensions
soon.

8

I created a set of database tables to mirror _File, _Field, etc. because those
files will have the analysis schema in our target database. The fields
provided are very complete and a program is provided to load these from a
.df. The load program doesn’t yet cover every possible option because I
don’t have a .df sample with everything to work from, but the structure is
very easily expanded to any new dump syntax. I have already done a
number of extensions as the tool is used at different sites and the changes
have been quick and easy to make.

9

Second, we are capturing basic information about all source code files in the
application. Filters are provided so that you can define what is and isn’t
source in the same directory tree in case you have non-source files mixed in
with the source. It even handles old Varnet systems where there are
compile units with no extension.

10

The next step breaks down Compile Units into sub components including
procedures, methods and functions. It is this pass which also creates the
links for empirical include files. For non-class Compile Units, a SubUnit
corresponding to MainBlock is also created for code not otherwise enclosed
in a SubUnit.

11

In addition to the functional decomposition of Compile SubUnits, a scan is
also made to record all blocks of any type including DO, EDITING, FOR,
FUNCTION, REPEAT, PROCEDURE, FUNCTION , TRIGGER and
METHOD. In the process, it is recorded whether a transaction is scoped to
the block and any frames and buffers scoped to the block. The full and
accurate resolution of buffer names is a recent addition based on Proparse.

12

With the use of Proparse, I recently have added tracking of all forms of
shared objects. This tracking includes where the definition is new, global,
and a number of other parameters appropriate to each object type, including
a field list for temp-tables and work-tables. I am currently working on
tracking whether shared variables are involved in an assignment on the left
or right side of the equals.

13

Now that we have identified all the static components, it is time to connect
them. The first step is all the RUN relationships between pieces of the
source code. The initial pass identifies all static Compile Unit to Compile
Unit run connections. Not all can be resolved at this point because some
calls are dynamic such as RUN VALUE() or RUN x IN handle. These
dynamic calls will be resolved later. The data structure also provides for
links between Compile SubUnits, i.e., a call located in an Internal Procedure,
Method, or Function or a call to an Internal Procedure, Method, or Function
from another Compile Unit, e.g., such as Method calls on classes or Internal
Procedure calls to persistent procedures. Unfortunately, the information
needed to make these connections is not in the COMPILE XREF data, so
these connections will have to be identified by subsequent analysis or
adding a new tool.

14

Next, we have links between the code and the data. This includes all
references to tables and columns in all compile units. At the table level, it
also includes flags for when the record is created or deleted. At the column
level it has a flag for update, i.e., the value of the column is changed in that
unit. Any column not changed is merely accessed. Only columns actually
referenced are included.

15

Finally, for the current version of ABL2DB, there are two additional stages.
One loads descriptions for each disk file. Many code bases have some kind
of standard description embedded in the source file and a tool is provided for
extracting these according to the standards of the specific code base. The
other is the loading of Menus and Functional Units. Menus provide us with a
structure for the application as seen by the user, each selection of which
runs a particular Compile Unit. From that Compile Unit, there is a body of
code which can be reached including all sub programs, persistent
procedures, and include files. We call this a Functional Unit. Functional
Units may, of course, overlap.

16

17

Now, on to some specific applications of the tool to real world problems.
First, shared variables.

Anyone who has worked on legacy code is likely to have their own shared
variable horror stories. In many applications, it was very common to define
large blocks of shared variables in an include file and then to reference that
include file routinely in all parts of an application or a specific function. This
makes it very difficult to determine where a shared variable is set and used
and clogs many files with large numbers of definitions which are not even
referenced in that compile set. There are techniques for replacing shared
variables with explicit parameter passing or with common reference objects,
but first one has to know the landscape where the replacement will occur.

18

The new function captures every shared object definition in every compile
unit, along with many characteristics of that definition. I am working on also
including whether or not the variable is assigned to or from in the compile
unit.

19

Here is the schema involved in this report. We are going to start with the
Functional Unit, a term in ABL2DB for an interconnected body of code which
performs some function such as all of the code which one might reach
starting with a particular selection on a particular menu or a particular batch
process. From there we will go to the main CompileUnit. One can just start
with the main compile unit. For example, at Inenco, there are no database
tables with menus as there are in many applications and all menus are
simply embedded in programs. This makes it difficult to extract functional
unit and main compile unit pairs. Finding the main compile unit for any
function thus requires reading code.

ProgramCall gives us the chain of all referenced CompileUnits from that
base. We link to DiskFile to get the name of the CompileUnit on Disk. Then,
we link to the SharedObjects in that CompileUnit. Here, we are looking only
at shared variables for now, so we link to the SharedVariable table for
additional information.

20

So, let’s take a look at the results and the code.

Switch to desktop to look at sample output and code. These will be
published with the talk on cintegrity.com.

21

22

Now let’s look at identifying unused database structures.

With an application that evolves over 20 years, like both of the sample code
bases used here, it is common for fields and even tables to get added in
anticipation of some work that is never done or for usage to change to other
fields, leaving behind the old fields, or even for whole modules to fall out of
use. None of this hurts the running of the application, but can make the
schema harder to maintain since the field looks like it should contain
meaningful data.

23

Here is the schema involved in this reporting. For all of the databases, all of
the tables of each of those databases, and each of the columns in those
tables, we look for column references, i.e., links between the column and a
compile unit. In this case, we don’t actually need to follow the link to the
compile unit and diskfile, since we don’t care about the names at the
moment. We count these column references until we get more of them than
some specified limit. For the sample, I used a limit of 1 on the theory that a
column only referenced once is probably not really being used. So, any time
there are 2 links, it moves on to the next column. Any column with the limit or
fewer links is reported.

Note that we might want to follow the link to the compile unit name to find out
where a reference occurs in order to evaluate the usage.

24

So, let’s take a look at the results and the code.

Switch to desktop to look at sample output and code. These will be
published with the talk on cintegrity.com.

25

26

Now let’s look at the problem of migrating a particular database field from
integer to INT64.

Once upon a time we only had integer as a datatype, but since 10.1B we
have also had INT64 to handle much larger numbers. As applications
evolve, what was once satisfactory as a plain 32 bit integer may need
conversion to 64 bit. For example, a counter used to sequence transactions
might be in danger of overflowing or a new currency or unit of measure may
lead to the need for a larger integer. While one can make this change in the
dictionary easily enough, it is advisable to visit all the places the column is
referenced to see if there are local variables which also need to be upsized.

27

So, here is the relevant schema, which you will notice is the same tables as
in the last example. This time, however, we will look for a specific database,
specific table, and specific column. Then we will follow the column
references for that column to the compile unit and on to the diskfile to get the
disk filename of the compile unit.

28

So, let’s take a look at the results and the code.

Switch to desktop to look at sample output and code. These will be
published with the talk on cintegrity.com.

29

30

Finally, let’s look at tracking block scopes.

Judging by what one sees on internet forums., one of the most common
problems in development is incorrect buffer or transaction scoping. We have
COMPILE LISTING to show us these scopes, but many programmers are
either unaware of the tool or seem to forget to use it to check their work.
But, this information is critical to understanding many issues of many
problems.

31

Here we have the schema involved in this report. We start with the
Functional Unit leading to the main Compile Unit which is called to start this
function as discussed before.

From the main Compile Unit, we walk down the Program call link which
connects Compile Units with the Compile Units they call. For each Compile
Unit, we link to Diskfile to get the filename.

For each Compile Unit, we then look at each Block in that Compile Unit.
This tells us whether there is a transaction scoped to that block. We then
look to see if there are any buffers scoped to that block and what table is
associated with that buffer if the buffer is for a database table.

32

So, let’s take a look at the results and the code.

Switch to desktop to look at sample output and code. These will be
published with the talk on cintegrity.com.

33

34

That concludes our examples for the day. Let’s look forward a bit to what is
coming next.

We still have a few things to finish in the current work like the involvement of
shared variables in assignments. The biggest issue at the moment is
extending Proparse to cover some of the Version 11.x syntax used by some
code at Inenco. James and I were able to identify a couple of specific points
of syntax that John Green has now added, but work is on-going to finish this
project. Just Thursday James isolated another syntax issue which I am sure
John will solve soon.

Among the other projects on the list is to improve the reporting on dynamic
calls and provide a mechanism for automatic resolution of these calls in
subsequent builds. We would also like to extend the tracking of calls and
data links to sub-Compile Unit blocks, i.e. internal procedures and methods.
We plan on capturing where clauses for all data accesses and possibly index
usage. We are going to look at reporting on trigger action for when trigger
maintenance is contemplated. This may simply be a report on data that is
already there.

But, most importantly, what gets added next will depend more than anything
else on what people need and ask for. No small part of what has been
added from the initial release is there because James needed it. Simon
Prinsloo and Stefan Drissen have also had direct impact. I might note that

35

as a part of implementing Proparse, there are now some Proparse utilities included.

35

36

To summarize…

37

This initial version of ABL2DB covers a lot of information about the code and
data in an application and their relationships. It is readily available and easy
to use in building queries and reports.

We have a clear initial roadmap for adding more information and functionality
and refining the information we have.

The design of the system is very modular and easy to expand with new
functions or to expand the information currently collected.

The tool is open sourced and has been designed to make the adjustments
needed to fit it to the characteristics of the local code base.

38

Here are some links for more information.

39

40

