
Creating a Dynamic REST Service

Session 429 – OE REST, Part 2 of 2

Dustin Grau – dgrau@progress.com

Principal Solutions Consultant

2

Introductions

3

Establishing Ground Rules

§  Only covering this topic in terms of the “Classic AppServer” approach
•  No discussion of the Pacific AppServer here (Roy Ellis covered this well)

•  We’ll be referencing the “Tomcat in the box” bundled with PDSOE

§  There are many types of REST implementations
•  We’ll examine what OpenEdge expects

•  Not covering versioning patterns

•  You can still roll your own

§  Definitions of “dynamic”
•  Dynamically created interface with rigid class structure

•  Static interface with a more dynamic class structure

§  Need to describe and access data before we can present it

4

5

The Data Layer

6

Describing Data

§  http://<server>:<port>/<webapp>/rest/<service>/<resource>[/<sub-resource>]
§  Defining a service within our WebApp: /rest/si/
§  Plural vs. Singular resource names
§  Avoiding verbs in the URI
§  Providing a simple resource: /rest/si/customer
§  Data returned as an object (JSON)

•  Temp-table = array of objects

•  Dataset = object with properties (temp-tables)

7

Accessing Data

§  http://<server>:<port>/<webapp>/rest/<service>/<resource>[/<sub-resource>]
§  GET /rest/si/customer

§  GET /rest/si/customer/1

§  GET /rest/si/customer?custnum=1

§  GET /rest/si/customer?name=Hoops

§  GET /rest/si/customer?filter={“name”: “Hoops”}

§  GET /rest/si/customer?filter={“ablFilter”: “Name BEGINS ‘Hoops’”}

§  GET /rest/si/customer?filter={“field”: “Name”, “operator”: “begins”, “value”: “Hoops”}

§  GET /rest/si/customer?filter={“criteria”: [{“field”: “Name”, “operator”: “begins”, “value”: “Hoops”}]}

§  POST, PUT, DELETE require JSON as request body

8

Preparing for Access

§  Annotate ABL resources
•  Manually: Define Service Interface

•  Automatic: Use a Mobile project type

§  Map REST operations to ABL operations
•  Manually: Add resource(s) in defined service, associate methods with verbs, add parameters

•  Automatic: Provide method annotations within exposed class file

§  Test service using a REST client
•  Publish the REST application to Tomcat

•  Use any compatible tool (RESTclient, Postman, etc.)

9

PDSOE Annotations

§  Drives creation of static catalog within a Mobile project
•  Service

–  Resource
o  Schema

o  Operations

o  Params

§  Immediately precede the item they describe
§  Can alter the object described

•  Change exposed path in REST service

•  For INVOKE’s, change verb used (default: PUT)

10

Class Header Annotations

@program FILE(name="CustomerBE.cls", module="AppServer").

@openapi.openedge.export FILE(type="REST", executionMode="singleton", useReturnValue="false",
writeDataSetBeforeImage="false").

@progress.service.resource FILE(name="CustomerBE", URI="/customer", schemaName="dsCustomer”,

schemaFile=”MyProject/AppServer/Sports/Business/customerbe.i").

class Sports.Business.CustomerBE inherits BusinessEntity:

 {Sports/Business/customerbe.i}

 …

11

Per-method Annotations

@openapi.openedge.export(type="REST", useReturnValue="false", writeDataSetBeforeImage="false").

@progress.service.resourceMapping(type="REST", operation="invoke", URI="/count?filter=~{filter~}", alias="”,

mediaType="application/json").

method public void count (input filter as character, output numRecs as integer):

…

@openapi.openedge.export(type="REST", useReturnValue="false", writeDataSetBeforeImage="true").

@progress.service.resourceMapping(type="REST", operation="read", URI="?filter=~{filter~}", alias="”,

mediaType="application/json").

@openapi.openedge.method.property (name="mappingType", value="JFP").

@openapi.openedge.method.property (name="capabilities", value="ablFilter,top,skip,id,orderBy").

method public void ReadCustomerBE (input filter as character, output dataset dsCustomer):

…

12

Abstracting Access via the JSDO

§  JSDO: JavaScript Data Object
§  Catalog-driven (descriptions in JSON format)
§  Automatically generated via PDSOE annotations

•  Only in a Mobile project only, currently

•  Must create manually in a REST Service project

§  Can manually map input/output parameters
•  Works on procedures or classes

•  Must adjust/re-map if parameters change

§  Similar purpose to libraries like BreezeJS

13

JSDO Overview

14

Static Annotation Considerations

§  In my own experiences, at this moment…YMMV
§  Where it works perfectly:

•  Single environment/developer

•  Few changes to objects after mapping

•  Small or limited number of resources

•  Using a mobile project with annotations

§  Where it gets tricky:
•  Collaborative environments

•  Frequent changes to mapped objects

•  Large number of exposed objects

15

Authentication via JSDO

§  Only certain security models are supported at present (anonymous, user, form)
§  We will use the Form-OERealm security model

•  POST’s j_username and j_password to j_spring_security_check

§  Requires creation of a JSDOSession instance (w/ or w/o credentials)
§  Must add a catalog and create JSDO instance against a resource
§  What about anonymous/public resources?

16

JSDO Resource Operations

§  CRUD
•  fill(), add(), assign(), remove()

•  saveChanges()

§  Submit(11.5)
•  saveChanges(true)

§  find(), findById()
§  getData()
§  subscribe(), unsubscribe()
§  Invoke methods

•  REST method == JSDO method

•  Must pass an object as parameter

17

Your Own Dynamic Implementation

§  How to structure of data packets and URI’s
•  Use same format as JSDO expects

•  Filters, datasets, errors, etc.

§  Use of classes or procedures?
•  Could read internal-procedure signatures to get input/output values

•  No class reflection yet, but you could implement a known interface!

§  Need to generate a JSDO-compatible catalog
•  Uses custom annotation methods to create an internal registry

•  Read registry and produce a proper catalog in JSON format

§  Execute REST request, apply parameters as needed
§  All will be handled by the Spark toolkit (release TBD)

18

Quick Notes on Security

§  Secure the connection between Spring framework and authenticating AppServer
•  Use a pre-generated CP token, set in realmTokenFile property in appSecurity XML

•  Ensures the only the request from an authorized endpoint will be requesting data

§  There should be a CP token available on every AppServer request
•  Even anonymous users will get a token: SessionID will be 0, ROLE_ANONYMOUS

•  Authenticated users will have an actual SessionID available and list of roles

§  Before establishing the request’s CP token, set to a no-access (dummy) token
•  Can be pre-generated and stored as a file on disk

•  Prevents any DB access from a stale/previous request

•  Remember to also do this after your request completes!

19

The UI Layer

20

Code Sample: JSDO Creation

var serviceURI = "http://oemobiledemo.progress.com/MobilityDemoService”;

var catalogURI = serviceURI + "/static/mobile/MobilityDemoService.json";

var custJSDO= null; // create instance later, uses a dsCustomer dataset.

var jsdosession = new progress.data.JSDOSession({serviceURI: serviceURI,
 catalogURIs: catalogURI});
var promise = jsdosession.login("", "");

promise.done(function(jsdosession, result, info) {

 var catReq = jsdosession.addCatalog(catalogURI);
 catReq.done(function(jsdosession, result, details) {

 custJSDO = new progress.data.JSDO({name: ‘CustomerBE'}); // name of REST resource

 custJSDO.fill().done(onAfterFillCustomers); // callback method to run when done

 });

)};

21

Code Sample: JSDO Creation

function onAfterFillCustomers(jsdo, success, request) {

 jsdo.dsCustomer.foreach(function(customer) {

 // write out some of the customer data to the page

 document.write(customer.data.CustNum + ' ' + customer.data.Name + '
');

 }

});

22

Code Sample: Kendo Datasource

var customerDS = new kendo.data.DataSource({

 transport: {

 jsdo: ‘CustomerBE’, // matches name of resource in catalog

 tableRef: ‘ttCustomer’ // required if dataset contains more than 1 table

 },

 error: function (e) {

 console.log('Error: ', e);

 }

});

$("#grid").kendoGrid({

 dataSource: customerDS,

 …

});

23

Advanced JSDO Features

§  Invoke methods appear as a method on a JSDO instance
•  To call a method “count” use myJSDO.count({ });

•  Currently requires an object to be passed, even if empty

§  New mappingType and capabilities features
•  Built-in type “JFP”: JSON Filter Pattern

•  Converts Kendo criteria to properly-grouped ABL “where” phrase (on client side)

•  Capabilities describes just that (can skip rows, return X records, sort columns, etc.)

•  Provide transport property “countFnName” with name of “count” method

§  Adding a new plugin (mapper) to JSDO
•  progress.data.PluginManager.addPlugin(“PluginName”, { … });

•  Currently only supports a requestMapping() method

•  We have requested a responseMapping() method

24

Real-World Questions

§  Logical table vs. database table
•  When fields don’t match (custom schema)

•  Transforming JSON-unsafe fields (dashes)

•  Representing non-normalized structures (extents)

§  Managing multi-table datasets
•  Read vs. write operations

•  Sending/handling errors

§  Other error-handling needs
•  All-or-nothing or commit only valid records?

•  How to manager errors with end-user?

25

Thank You!

§  “Inside the JSDO: Mobile and Web”
•  Edsel Garcia, Progress Exchange 2014

§  View demo pages (change #’s at end)
•  http://oemobiledemo.progress.com/jsdo/example014.html

§  Whitepaper: “Using the JSDO with KendoUI”
•  http://www.telerik.com/campaigns/kendo-ui/using-the-jsdo-with-kendo-ui

§  Download examples of JSDO v4.0 with KendoUI
•  https://community.progress.com/community_groups/openedge_development/m/documents/2020.aspx

§  JSDO available on GitHub
•  https://github.com/CloudDataObject/JSDO

§  All slides will be available after the conference!

