

Insight is 20/20: The Importance of Analytics

June 6, 2017

Amit Deokar

Department of Operations and Information Systems Manning School of Business University of Massachusetts Lowell Email: Amit_Deokar@uml.edu

Agenda

- Analytics / Data Science: What it is and Why Do We Care?
- Analytics and Business Strategy
- Analytics: A Closer Look
- Embedded to Predictive to Cognitive Analytics

Agenda

- Analytics / Data Science: What it is and Why Do We Care?
- Analytics and Business Strategy
- Analytics: A Closer Look
- Embedded to Predictive to Cognitive Analytics

Analytics is the scientific process of transforming data into insight for making better decisions.

Reference: INFORMS

Analytics: Why Now?

• Ubiquity of data opportunities

• E.g., operations, manufacturing, supply chain management, customer behavior, marketing campaign performance, workflow procedures, ...

5

Computing technology advances

• E.g., distributed/cloud computing, mobile computing, IOT/sensors, ...

Ċ.

BUSINESS DAY

What Wal-Mart Knows About Customers' Habits

By CONSTANCE L. HAYS NOV. 14, 2004

T

Correction Appended

Q

HURRICANE FRANCES was on its way, barreling across the Caribbean, threatening a direct hit on Florida's Atlantic coast. Residents made for higher ground, but far away, in Bentonville, Ark., executives at Wal-Mart Stores decided that the situation offered a great opportunity for one of their newest data-driven weapons, something that the company calls predictive technology.

A week ahead of the storm's landfall, Linda M. Dillman, Wal-Mart's chief information officer, pressed her staff to come up with forecasts based on what had happened when Hurricane Charley struck several weeks earlier. Backed by the trillions of bytes' worth of shopper history that is stored in Wal-Mart's computer network, she felt that the company could "start predicting what's going to happen, instead of waiting for it to happen," as she put it.

Hurricane Frances

Q

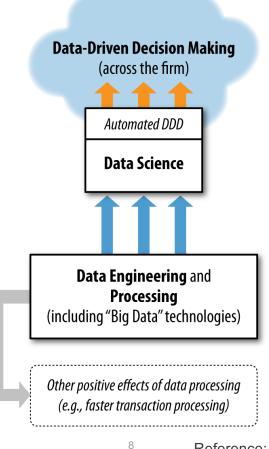
=

BUSINESS DAY | What Wal-Mart Knows About Customers' Habits

The experts mined the data and found that the stores would indeed need certain products -- and not just the usual flashlights. "We didn't know in the past that strawberry Pop-Tarts increase in sales, like seven times their normal sales rate, ahead of a hurricane," Ms. Dillman said in a recent interview. "And the pre-hurricane top-selling item was beer."

Thanks to those insights, trucks filled with toaster pastries and six-packs were soon speeding down Interstate 95 toward Wal-Marts in the path of Frances. Most of the products that were stocked for the storm sold quickly, the company said.

Data Science (Analytics), Engineering & Data-Driven Decision Making



Practice of basing decisions on the analysis of data, rather than purely on intuition.

Reference: Provost & Fawcett (2013) Data Science for Business

Agenda

- Analytics / Data Science: What it is and Why Do We Care?
- Analytics and Business Strategy
- Analytics: A Closer Look
- Embedded to Predictive to Cognitive Analytics

Business & IT Today

Tight integration of modern business analytics efforts with business strategies & Proactive rather than reactive approach Distinction using analytics

Modern Analytics Principles – A Strategy Perspective

- Deliver business value and impact
 - Building and continuous evolving analytics for high-value business impact
- Focus on the last mile
 - Deploying analytics into production to attain repeatable, ongoing business value
- Leverage Kaizen
 - Starting small and building on success
- Accelerate learning and execution
 - Doing, learning, adapting, and repeating
- Differentiate your analytics
 - Exploiting analytics to produce new results

Embed analytics

Building analytics into business processes to gain repeatability and scalability

Establish modern analytics architecture

• Leveraging commodity hardware and next generation technology to drive out costs

Build on human factors

• Maximizing and grooming talent

Capitalize on consumerization

- · Leveraging choices to innovate
 - BYOD (combine open/noncompetitive data with your data to discover patterns), BYOT (mix and match open source and proprietary tools), BYOM (leverage app stores and crowdsourcing)

Reference: Chambers and Dinsmore (2015) Advanced Analytics Methodologies

How to Distinguish Your Analytics?

Business area

 Applying analytics to a new business area or problem

Data

 Leveraging or inventing new data to enrich analytical insights

Approach

 Employing a combination of analytical approaches in an innovative way to discover new patterns and value

Precision

 Increasing granularity of analytics by focusing on individuals (people, transaction, resources, etc.) rather than segments or groups

Algorithms

 Developing or using new groundbreaking mathematical of scientific approaches to gain advantage

Embedding

 Systematically inserting analytics into operational processes to gain deeper insights

Speed

Accelerating the pace of business to stay ahead of the competition

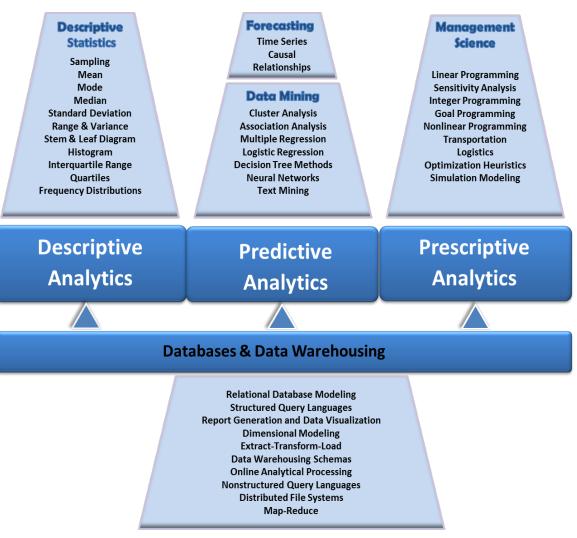
Reference: Chambers and Dinsmore (2015) Advanced Analytics Methodologies

Agenda

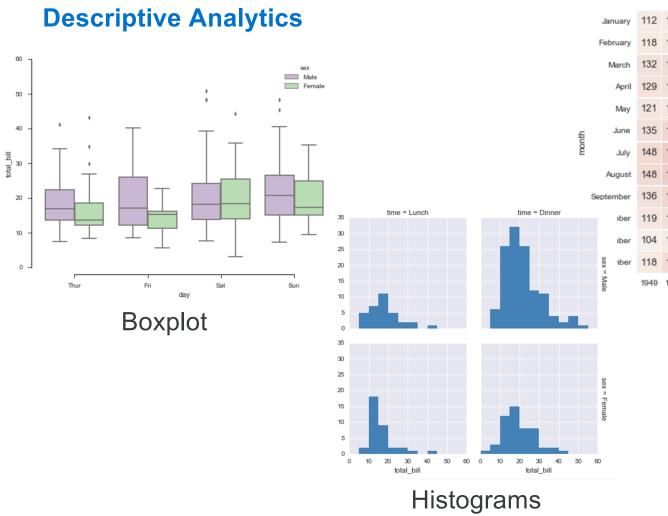
- Analytics / Data Science: What it is and Why Do We Care?
- Analytics and Business Strategy
- Analytics: A Closer Look
- Embedded to Predictive to Cognitive Analytics



Techniques Used in Different Types of Analytics



Reference: Asllah (2015) Business Analytics with Management Science Models and Methods



January	112	115	145	171	196	204	242	284	315	340	360	417	
February	118	126	150	180	196	188	233	277	301	318	342	391	
March	132	141	178	193	236	235	267	317	356	362	406	419	
April	129	135	163	181	235	227	269	313	348	348	396	461	
May	121	125	172	183	229	234	270	318	355	363	420	472	
June	135	149	178	218	243	264	315	374	422	435	472	535	
July	148	170	199	230	264	302	364	413	465	491	548	622	
August	148	170	199	242	272	293	347	405	467	505	559	606	
eptember	136	158	184	209	237	259	312	355	404	404	463	508	
ber	119	133	162	191	211	229	274	306	347	359	407	461	
ıber	104	114	146	172	180	203	237	271	305	310	362	390	
se iber	118	140	166	194	201	229	278	306	336	337	405	432	
sex uber = Male	1949	1950	1951	1952	1953	1954 ve	1955 ar	1956	1957	1958	1959	1960	
Heatmap													

Embedding Descriptive Analytics

- Dashboards & KPIs
- Example: Customer
 Relationship Management

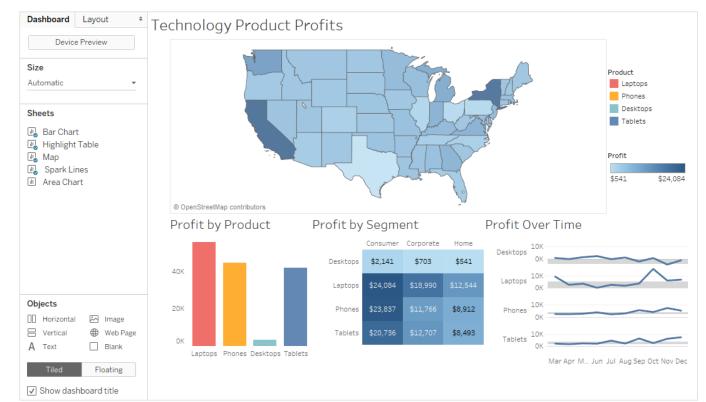
Reference: SalesForce.com

Embedding Descriptive Analytics

Descriptive Analytics

Dashboards & KPIs

Example: Product
 Management



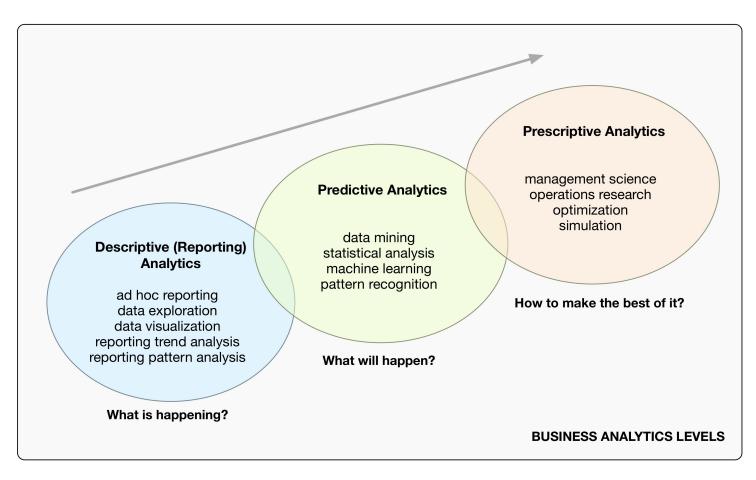
Descriptive Analytics: Vendors / Tools

- Off the Shelf Software Tools
 - Progress OpenEdge 306 ³ Progress^{*}
 - Tableau
 - Qlik **Qlik Q**
 - SAS Visual Analytics <u>Sas</u>
 - IBM Watson Analytics, Cognos
 - Tibco Spotfire TIBC@ Spotfire*

• ...

- Open Source Platforms / Languages
 - Python
 - R
 - ...

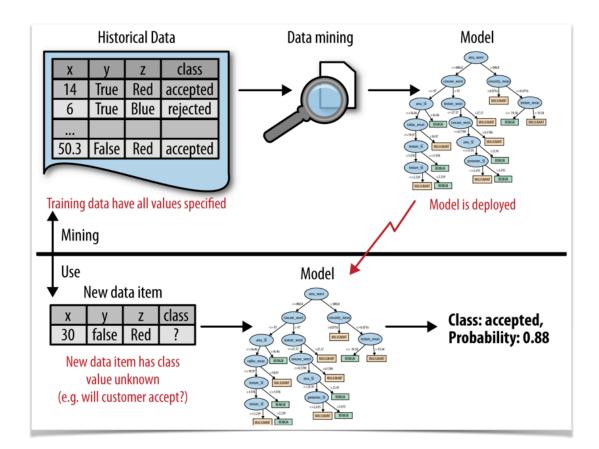
Types of Analytics: A Maturity Model Perspective



Competitive Advantage & Degree of Intelligence	Data-Driven Questions	Tools / Techniques	Source: INFORMS and IBM	Source: SAS		
	How to do thing's better? What's the best that can happen?	Optimization, Simulation	Prescriptive Analytics			
	What will happen next?	Predictive modeling		Analytics	Business	
	What if these trends continue?	Forecasting / Extrapolation	Predictive Analytics (Data <i>Mining</i>)			
	Why is this happening? What	Statistical analysis				
	What actions are needed? WhenAlertsshould I react?		Descriptive /	Data Access and	Intelligence Technologies	
	Where exactly is the problem?					
	How many, how often, where?	Ad hoc reports	(Business Intelligence)	Reporting		
	What happened? When did it happen?	Standard reports				

Predictive Analytics: Data Mining

- Data mining is a process with well-understood stages based on:
 - application of information technology
 - analyst's creativity
 - business knowledge
 - common sense
- Decompose a data analytics problem into pieces such that you can solve a known task with a tool
- There is a large number of data mining algorithms available, but only a limited number of data mining tasks



- **Supervised Learning** focus is on predicting a specific "target"
 - Classification
 - Regression
- **Unsupervised Learning** focus is on discovering patterns
 - Clustering
 - Co-occurence grouping
 - ...
 - Profiling
 - Link prediction
 - Data reduction
 - ...

Supervised Learning

- Classification
- Regression

Unsupervised Learning

- Clustering
- Co-occurence grouping

Classification attempts to *predict*, for each individual in a population, which class this individual belongs to.

"Among all the customers of *RetailCo*, which are likely to respond to a given offer?"

will respond

will not respond

"Among all the parts of the machine, which is likely to fail within the next X days?"

Classification algorithms provide models that determine which class a new individual belongs to.

Supervised Learning

- Classification
- Regression

Unsupervised Learning

- Clustering
- Co-occurence grouping

Regression (value estimation) attempts to estimate or predict, for each individual, the numerical value of some variable for that individual

"How much will a given customer use the service?"

Predicted variable: service usage

"How much useful life of machine is remaining?

Predicted variable: useful life

Regression models are generated by algorithms that analyze other, similar individuals in the population and their historical service usage / useful life

Regression procedures produce a model that, given an individual, estimates the value of the particular variable specific to that individual

Supervised Learning

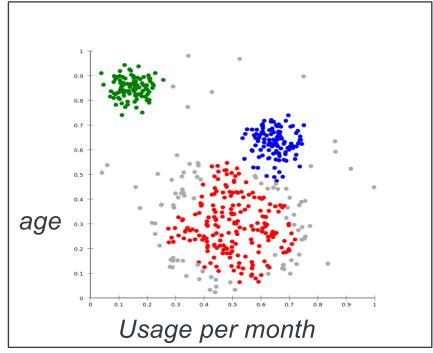
- Classification
- Regression

Unsupervised Learning

- Clustering
- Co-occurrence grouping

Clustering

• Do my customers form natural groups?



Supervised Learning

- Classification
- Regression

Unsupervised Learning

- Clustering
- Co-occurence grouping

Co-occurrence grouping / Association Rule Mining / Market Basket Analysis

• Find associations between entities based on the transactions they are involved in.

Customers Who Bought This Item Also Bought

<

Predictive Analytics: The

Power to Predict ...

*******/**(82)

Eric Siegel

Hardcover

\$17.07

Big Data, Big Analytics: Emerging Business ... > Michael Minelli ★★★★☆(9) Hardcover

\$34.15

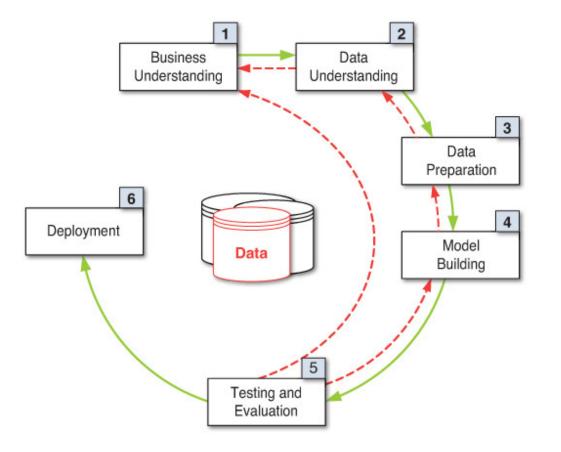
\$20.03

Big Data: A Revolution That Will Transform ... Viktor Mayer-Schonberger

Too Big to Ignore: The Business Case for Big ... > Phil Simon Art Art (20) Hardcover \$31.65

Predictive Analytics: Case of Predictive Maintenance of Assets

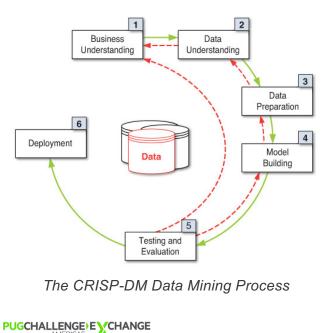
- Regression: Predict the Remaining Useful Life (RUL), or Time to Failure (TTF).
- Binary classification: Predict if an asset will fail within certain time frame (e.g. days).
- Multi-class classification: Predict if an asset will fail in different time windows: E.g., fails in window [1, w0] days; fails in the window [w0+1,w1] days; not fail within w1 days

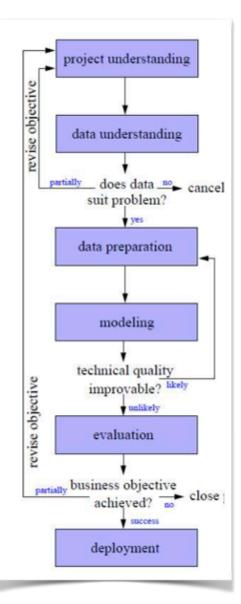


The CRISP-DM Data Mining Process

CRISP-DM

- Iteration as a rule
- Process of data exploration





What exactly is the problem, the expected benefit? How would a solution look like? What is known about the domain?

What data do we have available? Is the data relevant to the problem? Is it valid? Does it reflect our expectations? Is the data quality, quantity, recency sufficient?

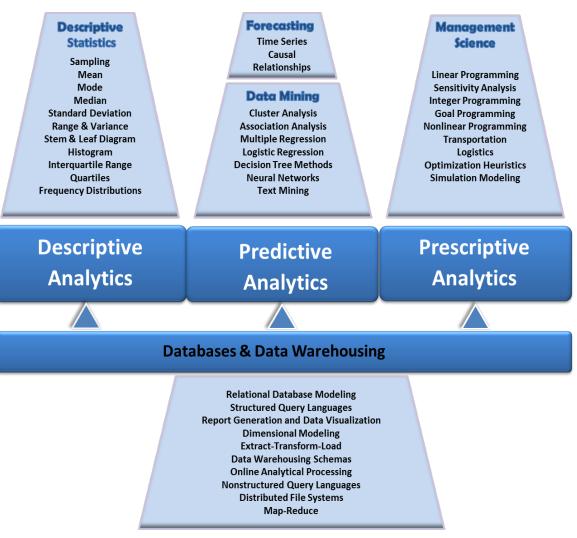
Which data should we concentrate on? How is the data best transformed for modeling? How may we increase the data quality?

What kind of model architecture suits the problem best? What is the best technique/method to get the model? How good does the model perform technically?

How good is the model in terms of project requirements? What have we learned from the project?

How is the model best deployed? How do we know that the model is still valid?

Techniques Used in Different Types of Analytics



Reference: Asllani (2015) Business Analytics with Management Science Models and Methods

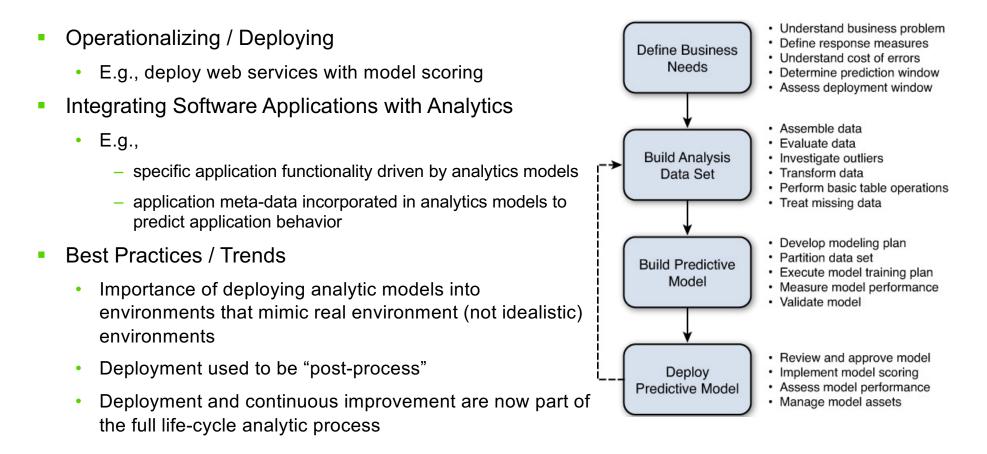
Prescriptive Analytics: Case of Transportation Models in Logistics

- Data Sources
 - Radio Frequency Identification (RFID) technology
 - Mobile devices
 - Sensors
 - External databases
- Data
 - Delivery times
 - Resource utilizations
 - Geographical coverages
 - Delivery statuses in real-time
- Optimization procedures (e.g., transhipment models) embedded to reroute vehicles on the go, and instant direction updates to drivers on their onboard navigation system to the next "best" destination.

Agenda

- Analytics / Data Science: What it is and Why Do We Care?
- Analytics and Business Strategy
- Analytics: A Closer Look
- Embedded to Predictive to Cognitive Analytics

Embedded Analytics Using Predictive & Prescriptive Analytics

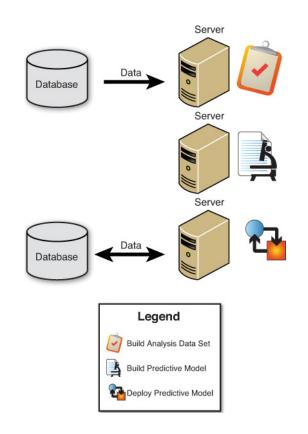


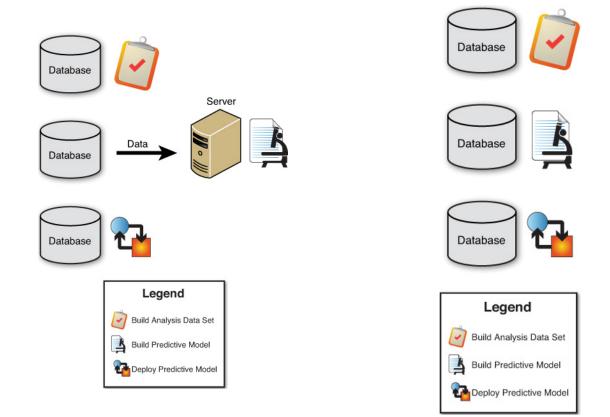
Reference: Chambers and Dinsmore (2015) Advanced Analytics Methodologies

Freestanding Analytics

Partially-Integrated Analytics

In-Database Analytics





Reference: Chambers and Dinsmore (2015) Advanced Analytics Methodologies

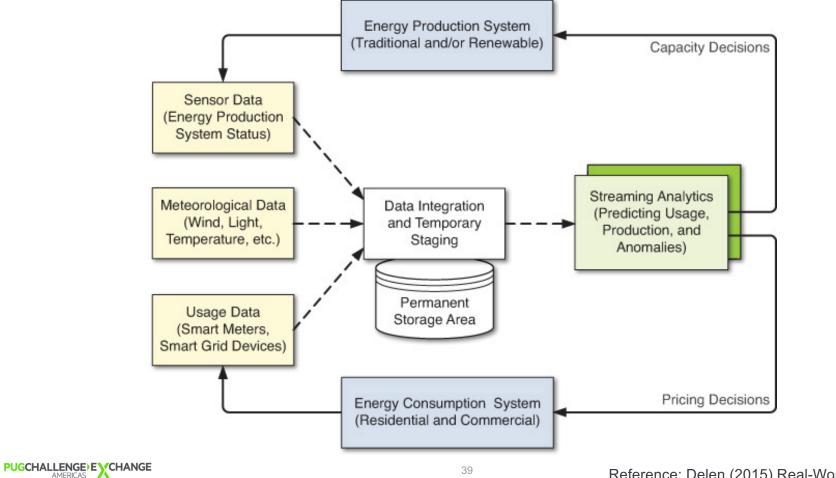
Big Data & Cognitive Analytics

- Big Data
 - Volume
 - Variety
 - Velocity
 - Value !

- Examples of Big Data Sources
 - Web data (e.g., text web pages)
 - Social media data (e.g., blogs, tweets, pictures)
 - Event data (e.g., clickstreams, web logs)
 - Machine-generated data (e.g., sensors, RFID, IOT, IIOT)

- Cognitive Analytics
 - Scaling up predictive analytics to deal with big data
 - IBM's Watson natural language processing
 - General Electrics' Predix for Industrial IOT
 - Example techniques
 - Deep learning extensions of artificial neural networks
 - Text mining
 - Graph mining

Big Data Analytics: Case of Streaming Analytics in the Energy Industry

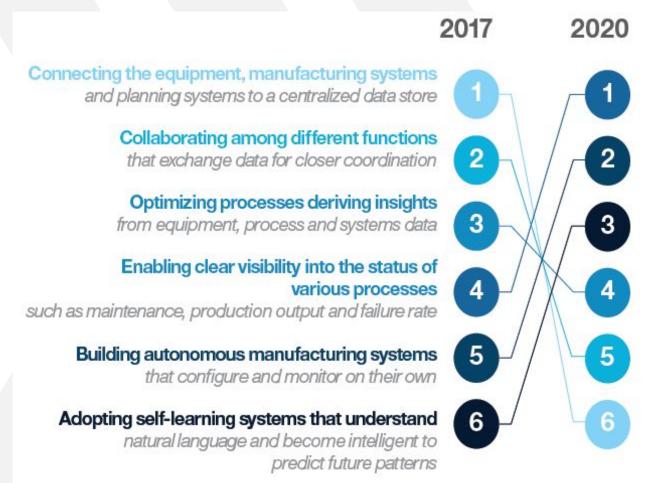


Reference: Delen (2015) Real-World Data Mining

Current Trends: Integrated Applications with Cognitive Analytics

- Traditional Application Development
 - Front-end tooling
 - Back-end services
 - Data connectivity
 - Business rules
- Integration with Cognitive Analytics
 - E.g., OpenEdge + DataRPM
 - Real-time data ingestion integrated in the application
 - Streaming analytics (high velocity)
 - Meta-learning parameter tuning based on errors, i.e., learning on the go

Current Trends: Cognitive Manufacturing



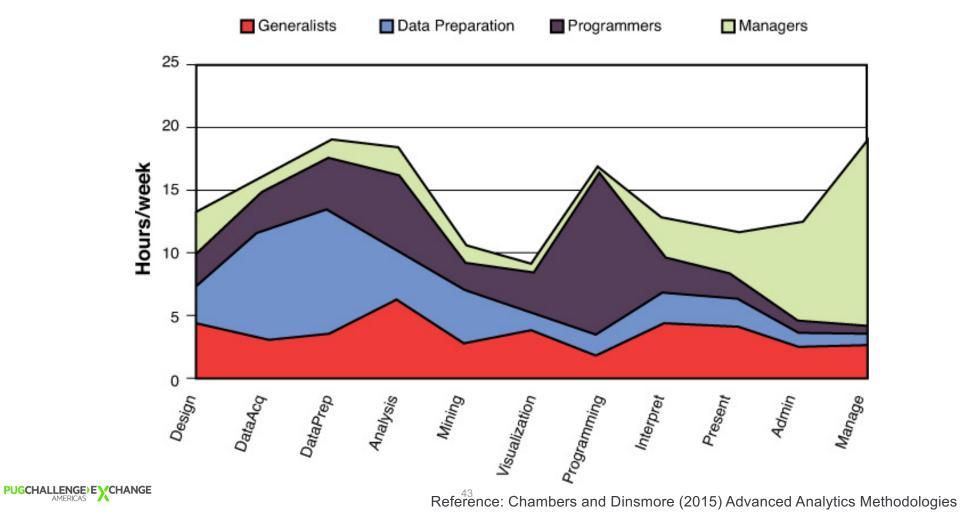
Reference: IBM Institute of Business Value

Roles in Analytics / Data Science

Data Scientist / Data Analyst

- Understanding the potential
- Can translate from business to execution
- Ability to evaluate proposal and execution
- Can do the actual modeling
- Applied statistician X computer scientist / info systems
- Business knowledge X analytical tools knowledge
- Collaborator in an analytics/data-science project
- Managing an analytics/data-science project
- Investing in an analytics/data-science project
 - Understanding the potential
 - Can translate from business to execution
 - Ability to evaluate proposal and execution

Harvard Business Review	Q SEARCH
THE MAGAZINE BLOGS	AUDIO & VIDEO BOOKS CASES WEBINARS
Guest limited access	Register today and save 20%* off your first order! Details
THE MAGAZINE October 2012	
Data Scientist: The	Sexiest Job of the 21st
Century	Sexiest Job of the 21st
by Thomas H. Davenport and D.J. Patil	
Comments (77)	🖂 🗾 in 🖪 👥 🖨
	RELATED Executive Summary
	ALSO AVAILABLE • Buy PDF



Summary

- Analytics has clearly gained traction in various industry sectors
- Transformation from embedded to predictive to cognitive analytics
- Key to align business strategy with analytics strategy
- Need for investment in data sources that can improve decision-making
- Integration of analytics in variety of applications

Thank You

Questions or Comments?