
OpenEdge & CouchDB
Integrating the OpenEdge ABL with CouchDB

Don Beattie
Software Architect
Quicken Loans Inc.

Apache CouchDB has started. Time to relax.

Intro

The OpenEdge RDBMS is a great database that most of us
work with on a daily basis to store our relational data.
However it isn’t necessarily the best place to store and
manage JSON messages. It's also more difficult to
implement as a distributed system. Instead we might
consider a document-oriented database.

Case Study System Diagram

What we’ll consider...

● The CouchDB
○ CAP Theorem
○ Locking vs Multi-Version Concurrency Control (MVCC)
○ Consistency between Multiple Database Servers
○ Eventual Consistency through Incremental Replication

● The Claim Check Design Pattern
● CouchDB RESTful API
● OOABL Classes for CouchDB
● Sample Calls to CouchDB from the AVM
● Demo (if we have time and the desire)

○ _utils
○ ABL Client

What is CouchDB?

CouchDB doesn’t store data and relationships in tables like a relational database,
instead each database is a collection of queryable documents.

● Open Source
● Document-Oriented
● NoSQL Database
● Written in fault tolerant Erlang
● Clusters and Replication
● High Availability
● Uses JSON to Store Data
● RESTful API
● MapReduce
● Not Couchbase

CAP Theorem

The CAP theorem states that any networked shared-data system can have at most
two of three desirable properties (distributed systems):

● consistency (C) equivalent to having a single up-to-date copy of the data
● high availability (A) of that data (for updates)
● tolerance to network partitions (P)

CouchDB is Availability and Partition Tolerant.

Pick Two...

Traditional Record Locking versus MVCC

In a relational database, to modify a table the RDMBS must ensure that nobody else is
trying to update or read that row. A common way to handle that is with a record lock.

Instead of locks, CouchDB uses Multi-Version Concurrency Control (MVCC) to
manage concurrent access to the database.

Consistency between Multiple Database Servers

Maintaining consistency within a single database node is relatively easy for most
databases. The real problems start to surface when you try to maintain
consistency between multiple database servers. If a update is done against Server
A, how do we make sure additional servers are consistent. With relational
databases it is a very complex problem.

Maintaining Consistency in a RDBMS
● Multi-primary
● Primary/replica
● Partitioning
● Sharding
● Write-through caches
● Other complex techniques

Eventual Consistency through Incremental Replication

When availability is a priority over consistency, updates can be performed against
one node of the database without waiting for other nodes to come into agreement.
If the database knows how to take care of reconciling these operations between
nodes, we achieve Eventual Consistency in exchange for high availability.

A CouchDB achieves Eventual
Consistency by using Incremental
Replication.

Incremental Replication is a process
where document changes are
periodically copied between servers. If
there is a conflict, the newest wins, but
the older conflict is also retained if
needed later by some process.

The Claim Check Design Pattern

The idea behind Claim Check is simple:

● Put away or detach the data
that your application doesn’t
need by storing the data into
some persistent data store.

● Let your application run
efficiently with the minimal
data that it requires.

● When finally there is a need, retrieve the data from the persistent data store
before continuing on with processing.

CouchDB RESTful API

How do we integrate CouchDB with an OpenEdge application?

It's all about the RESTful API… Here is a small subset:

Create the invoice database:
PUT http://server/invoice

Retrive all databases:
GET http://server/all_dbs

Create an index on invoice:
PUT http://server/invoice/_index
{
 "index": {
 "fields": ["InvoiceNumber"]
 },
 "name" : "InvoiceNumber-index"
}

Create a document in the invoice database
PUT http://server/invoice/f1dc1b12-05d9-488e-2614
{
 "Invoice": [
 {
 "ID": "f1dc1b12-05d9-488e-2614",
 "InvoiceNumber": "ABCD1234", ...

Find a document in the invoice database
POST http://server/invoice/_find
{
 "selector": {
 "_id": "f1dc1b12-05d9-488e-2614-08114466b4f3"
 }
}

http://server/invoice
http://server/invoice
http://server/all_dbs
http://localhost:32769/invoice/_index
http://server/invoice/f1dc1b12-05d9-488e-2614
http://server/invoice/f1dc1b12-05d9-488e-2614
http://server/invoice/_find

OOABL Classes for CouchDB

CouchDB.cls - The lowest level functionality (primitives) for communicating with any CouchDB database.

class abl.docstore.CouchDB:
 define private variable oHTTPClient as abl.http.IHTTPClient no-undo.
 define private variable oJsonParsing as abl.json.JsonParsing no-undo.

 method public OpenEdge.Core.Collections.IStringCollection _all_dbs():

InvoiceDB.cls - Inherits CouchDBPrimitives to create high-level functionality for the invoice docstore.

&GLOBAL-DEFINE DatabaseName invoice
class abl.docstore.InvoiceDB
 inherits abl.docstore.CouchDB
 implements abl.docstore.IDocStore:

 { abl/docstore/dataset/dsInvoice.i }

ABL Code: Creating Document in CouchDB

// sampleCreateDocument.p
{ abl/docstore/dataset/dsInvoice.i }

define variable lcJson as longchar no-undo.
define variable cID as character no-undo.
define variable oInvoiceDB as abl.docstore.InvoiceDB no-undo.

oInvoiceDB = new abl.docstore.InvoiceDB().
dataset dsInvoice:write-json("longchar":u, lcJson, true, ?, ?, true).

cID = oInvoiceDB:CreateDocument(lcJson).

return.
finally:
 delete object oInvoiceDB no-error.
end finally.

ABL Code: Finding Document in CouchDB

// sampleFindDocument.p
{ abl/docstore/dataset/dsInvoice.i }

define variable oInvoiceDB as abl.docstore.InvoiceDB no-undo.

oInvoiceDB = new abl.docstore.InvoiceDB().

oInvoiceDB:Find('"_id": "f1dc1b12-05d9-488e-2614-08114466b4f3"':u,
 output dataset dsInvoice by-reference).

return.
finally:
 delete object oInvoiceDB no-error.
end finally.

Questions?

Resources

● http://couchdb.apache.org - CouchDB Home
● https://cloudant.com - CouchDB in the Cloud
● https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed - CAP Theorem
● http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html - Claim Check

My Contact Information:
Don Beattie
donaldbeattie@quickenloans.com

http://couchdb.apache.org/
http://couchdb.apache.org/
https://cloudant.com/
https://cloudant.com/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html

