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Speaker BIO

 Over 20 years of industry experience, favoring reality over formality   

 Specializing in vendor-neutral, cross-platform application and service integration   

 Passionate technology advocate

 Session code examples and slide-updates available in GitHub repo:
● https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop

Only those who have the patience to do simple things 
perfectly will acquire the skill to do difficult things easily

https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop
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Agenda

 Why Bother with OOABL?

 Setting up for Success 

 OOABL Primer

 Procedural vs OOABL Comparison 

 Every-day Use Examples

 Next Steps
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Why Bother with OOABL?

 OOABL will enforce method and type checking during compilation

 Doesn't fix code/logic, but mitigates opportunity for failure

 Even the most experienced developers still encounter run-time errors when procedure signatures 
don't match

 You want to modernize, right? 

 PASOE web handlers, (REST) BusinessEntity – Class-based

 Object caching and memory management, superior to procedural counter-parts 

 Garbage collection assists in limiting the amount of clean-up concerns

 Please, pick-up after yourself, though

 Inheritance and static classes can be simple scaffolding for application architecture

 reduces the amount of traditional "framework" management code

– eg. super-procedure-based: run, persistent, make super, handle locate, repeat
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Why Bother: ...it’s too difficult

 It doesn't have to be

 It can be as simple or complex as you want or need it to be

 Don't get caught-up in the academics of it all

 Design Patterns

– Static Singleton Factory Provider Pattern

– Inversion of Control, Dependency Injection

– Polymorphism

– Wait, what?

 Start with small, simple tasks

 Global functions

 Logging

 Messaging

 Slowly mix-in OOABL to your procedural code
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Setting Up for Success
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Setting Up for Success: the IDE

 Use PDSOE for projects

 Convenience libraries usually 
already included in PROPATH

 OpenEdge.Core.pl

 OpenEdge.BusinessLogic.pl

 OpenEdge.Net.pl
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Setting Up for Success: Get the Source, View the Source

 Get the ADE Dev 
Tools source 

 https://community.progres
s.com

 Link in ADE Dev 
Tools source

 Use the Class 
Browser

https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
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OOABL Primer
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OOABL Primer: Anatomy of a Class
 using === OOP Propath

 @ line 2,3

 Replace "." with "/" to find Class
r-code

 Exception "Progress.*"

 Class "Package" or "Namespace"

 @ line 8

 Means: path to folder containing class files

 Inherits "Progress.Lang.Object" by default

 @ line 9
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OOABL Primer: Anatomy of a Class
 Variables, Datasets, etc

 @ line 11

 Called: [Data-]Members

 Properties

 @ line 14

 Variables with built-in logic

 Constructor, Destructor

 @ line 25

 Optional*

 * based-on super-class

 Member Accessibility modes

 @ line 30

 Public, Private, Protected

  
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OOABL Primer: Error Handling – Catch, Handle, and Throw

 Very convenient to start using THROW, CATCH

 There is no Try, only blocks that THROW vs raise errors

 Fewer lines of 'if .. then … else'-style error processing logic

 Change your mindset

 let errors happen, and handle vs test for them
 

 FINALLY 

 Runs as the very last line of executable code prior to procedure or block exiting completely

 A good place for 'clean-up' logic
 

 Use of these error handling methods is a requirement when using Assertions (later)



13

OOABL Primer: Error Handling Mix-in

 Throw

 Added to blocks

 Creates error object
 

 Catch

 Inside blocks that Throw

 Passed error object for handling
 

 Finally

 LAST block to execute

– Even after 'return' statement

– Can be inside other blocks

 Convenient place to clean-up objects, 
handles, etc
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Procedural vs OOABL Comparison
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Procedural vs OOABL Comparison: Include vs Inherits
Procedural Include OOABL Inherits
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Procedural vs OOABL Comparison: Run it!

 Procedural

 Use "run" statement

 

 OOABL 

 create a NEW "instance"

 Be sure to delete your object 

 A more Apples-to-apples example

– Better to call "logic" in a method

– eg: "<charvar> = example01:doSomething(1)"
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Procedural vs OOABL Comparison: Super vs Static

Procedural Super OOABL Static
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Every-day Use Examples
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Every-day Use: OpenEdge.Core.Assert

 Easily the most versatile 
class

 Static methods

 Covers many every-day 
use-cases
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Every-day Use: OpenEdge.Core.Assert

Procedural Validation OOABL Assertions
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Every-day Use: OpenEdge.Core.Session

Procedural Session

OOABL Session
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Every-day Use: OpenEdge.Core.TimeStamp
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Every-day Use: OpenEdge.Core.String

Procedural Strings OOABL Strings
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Every-day Use: OpenEdge.Core.Collections.Array

Procedural Array/Extent (variable len) OOABL Array
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Every-day Use: OpenEdge.Core.Collections.StringCollection

 A Better Way to build a list of Strings

 Consider it a temp-table of typed-objects 

 Use Iterator to loop entries
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Every-day Use: OpenEdge.Net.URI

 String-parsing of URIs can be hit-or-miss

 URI has both Static and Instance methods
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Every-day Use: OpenEdge.Net.HTTP.*
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What to Expect
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What to Expect

 Adopt PDSOE for your IDE 

 The auto-complete and class-viewer are invaluable

 At minimum, use an IDE that performs color-coding and syntax checks

 Confusion – Move at a comfortable pace for you

 Start simple

 Move deeper into OOP as your understanding increases  

 Learn using good examples

 Reference libraries will change between versions

 Acquire the source and actually look at it

 Compare the source between versions

– Compilations will let you know if things are *broken*, you will want to confirm the behavior 
hasn't changed beyond your expectations
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Next Steps

 Create your own custom override classes
 Explore use of overloads to simplify call signature

 Interfaces, Abstract classes

 JSON 
 Progress.JSON.* 

 Enumerators
 Progress.Lang.Enum

 OpenEdge.Core.*Enum

 Runtime Application Framework

 CCS-style
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Next Steps

 Next-level OOP design recommendations

 CCS Samples: https://github.com/consultingwerk/CCS_Samples

 IOC, Dependency Injection: https://github.com/PeterJudge-PSC/InjectABL 

 AutoEdge, The Factory: https://github.com/PeterJudge-PSC/autoedgethefactory

 (2016) 806: OO-Oh, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2016/806 - OO-Oh.pdf

 (2018) 326: Building Great Interfaces with OOABL, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF

 Sessions by Peter Judge 

 excellent resources – couldn’t find links :(

 OE Dev Tools Source

 Progress Community Website

 https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_
5F00_tools

https://github.com/consultingwerk/CCS_Samples
file:///home/cthomson/Documents/psc/pugna_2019/everydayoop/NULL
https://github.com/PeterJudge-PSC/autoedgethefactory
http://pugchallenge.org/downloads2016/806%20-%20OO-Oh.pdf
http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools


Questions?
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