
296: Everyday OOABL

Oct 7, 2019
Chad R. Thomson
Senior Principal Consultant
Progress Software

2

Speaker BIO

 Over 20 years of industry experience, favoring reality over formality

 Specializing in vendor-neutral, cross-platform application and service integration

 Passionate technology advocate

 Session code examples and slide-updates available in GitHub repo:
● https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop

Only those who have the patience to do simple things
perfectly will acquire the skill to do difficult things easily

https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop

3

Agenda

 Why Bother with OOABL?

 Setting up for Success

 OOABL Primer

 Procedural vs OOABL Comparison

 Every-day Use Examples

 Next Steps

4

Why Bother with OOABL?

 OOABL will enforce method and type checking during compilation

 Doesn't fix code/logic, but mitigates opportunity for failure

 Even the most experienced developers still encounter run-time errors when procedure signatures
don't match

 You want to modernize, right?

 PASOE web handlers, (REST) BusinessEntity – Class-based

 Object caching and memory management, superior to procedural counter-parts

 Garbage collection assists in limiting the amount of clean-up concerns

 Please, pick-up after yourself, though

 Inheritance and static classes can be simple scaffolding for application architecture

 reduces the amount of traditional "framework" management code

– eg. super-procedure-based: run, persistent, make super, handle locate, repeat

5

Why Bother: ...it’s too difficult

 It doesn't have to be

 It can be as simple or complex as you want or need it to be

 Don't get caught-up in the academics of it all

 Design Patterns

– Static Singleton Factory Provider Pattern

– Inversion of Control, Dependency Injection

– Polymorphism

– Wait, what?

 Start with small, simple tasks

 Global functions

 Logging

 Messaging

 Slowly mix-in OOABL to your procedural code

6

Setting Up for Success

7

Setting Up for Success: the IDE

 Use PDSOE for projects

 Convenience libraries usually
already included in PROPATH

 OpenEdge.Core.pl

 OpenEdge.BusinessLogic.pl

 OpenEdge.Net.pl

8

Setting Up for Success: Get the Source, View the Source

 Get the ADE Dev
Tools source

 https://community.progres
s.com

 Link in ADE Dev
Tools source

 Use the Class
Browser

https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools

9

OOABL Primer

10

OOABL Primer: Anatomy of a Class
 using === OOP Propath

 @ line 2,3

 Replace "." with "/" to find Class
r-code

 Exception "Progress.*"

 Class "Package" or "Namespace"

 @ line 8

 Means: path to folder containing class files

 Inherits "Progress.Lang.Object" by default

 @ line 9

11

OOABL Primer: Anatomy of a Class
 Variables, Datasets, etc

 @ line 11

 Called: [Data-]Members

 Properties

 @ line 14

 Variables with built-in logic

 Constructor, Destructor

 @ line 25

 Optional*

 * based-on super-class

 Member Accessibility modes

 @ line 30

 Public, Private, Protected

12

OOABL Primer: Error Handling – Catch, Handle, and Throw

 Very convenient to start using THROW, CATCH

 There is no Try, only blocks that THROW vs raise errors

 Fewer lines of 'if .. then … else'-style error processing logic

 Change your mindset

 let errors happen, and handle vs test for them

 FINALLY

 Runs as the very last line of executable code prior to procedure or block exiting completely

 A good place for 'clean-up' logic

 Use of these error handling methods is a requirement when using Assertions (later)

13

OOABL Primer: Error Handling Mix-in

 Throw

 Added to blocks

 Creates error object

 Catch

 Inside blocks that Throw

 Passed error object for handling

 Finally

 LAST block to execute

– Even after 'return' statement

– Can be inside other blocks

 Convenient place to clean-up objects,
handles, etc

14

Procedural vs OOABL Comparison

15

Procedural vs OOABL Comparison: Include vs Inherits
Procedural Include OOABL Inherits

16

Procedural vs OOABL Comparison: Run it!

 Procedural

 Use "run" statement

 OOABL

 create a NEW "instance"

 Be sure to delete your object

 A more Apples-to-apples example

– Better to call "logic" in a method

– eg: "<charvar> = example01:doSomething(1)"

17

Procedural vs OOABL Comparison: Super vs Static

Procedural Super OOABL Static

18

Every-day Use Examples

19

Every-day Use: OpenEdge.Core.Assert

 Easily the most versatile
class

 Static methods

 Covers many every-day
use-cases

20

Every-day Use: OpenEdge.Core.Assert

Procedural Validation OOABL Assertions

21

Every-day Use: OpenEdge.Core.Session

Procedural Session

OOABL Session

22

Every-day Use: OpenEdge.Core.TimeStamp

23

Every-day Use: OpenEdge.Core.String

Procedural Strings OOABL Strings

24

Every-day Use: OpenEdge.Core.Collections.Array

Procedural Array/Extent (variable len) OOABL Array

25

Every-day Use: OpenEdge.Core.Collections.StringCollection

 A Better Way to build a list of Strings

 Consider it a temp-table of typed-objects

 Use Iterator to loop entries

26

Every-day Use: OpenEdge.Net.URI

 String-parsing of URIs can be hit-or-miss

 URI has both Static and Instance methods

27

Every-day Use: OpenEdge.Net.HTTP.*

28

What to Expect

29

What to Expect

 Adopt PDSOE for your IDE

 The auto-complete and class-viewer are invaluable

 At minimum, use an IDE that performs color-coding and syntax checks

 Confusion – Move at a comfortable pace for you

 Start simple

 Move deeper into OOP as your understanding increases

 Learn using good examples

 Reference libraries will change between versions

 Acquire the source and actually look at it

 Compare the source between versions

– Compilations will let you know if things are *broken*, you will want to confirm the behavior
hasn't changed beyond your expectations

30

Next Steps

 Create your own custom override classes
 Explore use of overloads to simplify call signature

 Interfaces, Abstract classes

 JSON
 Progress.JSON.*

 Enumerators
 Progress.Lang.Enum

 OpenEdge.Core.*Enum

 Runtime Application Framework

 CCS-style

31

Next Steps

 Next-level OOP design recommendations

 CCS Samples: https://github.com/consultingwerk/CCS_Samples

 IOC, Dependency Injection: https://github.com/PeterJudge-PSC/InjectABL

 AutoEdge, The Factory: https://github.com/PeterJudge-PSC/autoedgethefactory

 (2016) 806: OO-Oh, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2016/806 - OO-Oh.pdf

 (2018) 326: Building Great Interfaces with OOABL, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF

 Sessions by Peter Judge

 excellent resources – couldn’t find links :(

 OE Dev Tools Source

 Progress Community Website

 https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_
5F00_tools

https://github.com/consultingwerk/CCS_Samples
file:///home/cthomson/Documents/psc/pugna_2019/everydayoop/NULL
https://github.com/PeterJudge-PSC/autoedgethefactory
http://pugchallenge.org/downloads2016/806%20-%20OO-Oh.pdf
http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

