
296: Everyday OOABL

Oct 7, 2019
Chad R. Thomson
Senior Principal Consultant
Progress Software

2

Speaker BIO

 Over 20 years of industry experience, favoring reality over formality

 Specializing in vendor-neutral, cross-platform application and service integration

 Passionate technology advocate

 Session code examples and slide-updates available in GitHub repo:
● https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop

Only those who have the patience to do simple things
perfectly will acquire the skill to do difficult things easily

https://github.com/ChadThomsonPSC/pugna-2019-everyday-oop

3

Agenda

 Why Bother with OOABL?

 Setting up for Success

 OOABL Primer

 Procedural vs OOABL Comparison

 Every-day Use Examples

 Next Steps

4

Why Bother with OOABL?

 OOABL will enforce method and type checking during compilation

 Doesn't fix code/logic, but mitigates opportunity for failure

 Even the most experienced developers still encounter run-time errors when procedure signatures
don't match

 You want to modernize, right?

 PASOE web handlers, (REST) BusinessEntity – Class-based

 Object caching and memory management, superior to procedural counter-parts

 Garbage collection assists in limiting the amount of clean-up concerns

 Please, pick-up after yourself, though

 Inheritance and static classes can be simple scaffolding for application architecture

 reduces the amount of traditional "framework" management code

– eg. super-procedure-based: run, persistent, make super, handle locate, repeat

5

Why Bother: ...it’s too difficult

 It doesn't have to be

 It can be as simple or complex as you want or need it to be

 Don't get caught-up in the academics of it all

 Design Patterns

– Static Singleton Factory Provider Pattern

– Inversion of Control, Dependency Injection

– Polymorphism

– Wait, what?

 Start with small, simple tasks

 Global functions

 Logging

 Messaging

 Slowly mix-in OOABL to your procedural code

6

Setting Up for Success

7

Setting Up for Success: the IDE

 Use PDSOE for projects

 Convenience libraries usually
already included in PROPATH

 OpenEdge.Core.pl

 OpenEdge.BusinessLogic.pl

 OpenEdge.Net.pl

8

Setting Up for Success: Get the Source, View the Source

 Get the ADE Dev
Tools source

 https://community.progres
s.com

 Link in ADE Dev
Tools source

 Use the Class
Browser

https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools

9

OOABL Primer

10

OOABL Primer: Anatomy of a Class
 using === OOP Propath

 @ line 2,3

 Replace "." with "/" to find Class
r-code

 Exception "Progress.*"

 Class "Package" or "Namespace"

 @ line 8

 Means: path to folder containing class files

 Inherits "Progress.Lang.Object" by default

 @ line 9

11

OOABL Primer: Anatomy of a Class
 Variables, Datasets, etc

 @ line 11

 Called: [Data-]Members

 Properties

 @ line 14

 Variables with built-in logic

 Constructor, Destructor

 @ line 25

 Optional*

 * based-on super-class

 Member Accessibility modes

 @ line 30

 Public, Private, Protected



12

OOABL Primer: Error Handling – Catch, Handle, and Throw

 Very convenient to start using THROW, CATCH

 There is no Try, only blocks that THROW vs raise errors

 Fewer lines of 'if .. then … else'-style error processing logic

 Change your mindset

 let errors happen, and handle vs test for them

 FINALLY

 Runs as the very last line of executable code prior to procedure or block exiting completely

 A good place for 'clean-up' logic

 Use of these error handling methods is a requirement when using Assertions (later)

13

OOABL Primer: Error Handling Mix-in

 Throw

 Added to blocks

 Creates error object

 Catch

 Inside blocks that Throw

 Passed error object for handling

 Finally

 LAST block to execute

– Even after 'return' statement

– Can be inside other blocks

 Convenient place to clean-up objects,
handles, etc

14

Procedural vs OOABL Comparison

15

Procedural vs OOABL Comparison: Include vs Inherits
Procedural Include OOABL Inherits

16

Procedural vs OOABL Comparison: Run it!

 Procedural

 Use "run" statement

 OOABL

 create a NEW "instance"

 Be sure to delete your object

 A more Apples-to-apples example

– Better to call "logic" in a method

– eg: "<charvar> = example01:doSomething(1)"

17

Procedural vs OOABL Comparison: Super vs Static

Procedural Super OOABL Static

18

Every-day Use Examples

19

Every-day Use: OpenEdge.Core.Assert

 Easily the most versatile
class

 Static methods

 Covers many every-day
use-cases

20

Every-day Use: OpenEdge.Core.Assert

Procedural Validation OOABL Assertions

21

Every-day Use: OpenEdge.Core.Session

Procedural Session

OOABL Session

22

Every-day Use: OpenEdge.Core.TimeStamp

23

Every-day Use: OpenEdge.Core.String

Procedural Strings OOABL Strings

24

Every-day Use: OpenEdge.Core.Collections.Array

Procedural Array/Extent (variable len) OOABL Array

25

Every-day Use: OpenEdge.Core.Collections.StringCollection

 A Better Way to build a list of Strings

 Consider it a temp-table of typed-objects

 Use Iterator to loop entries

26

Every-day Use: OpenEdge.Net.URI

 String-parsing of URIs can be hit-or-miss

 URI has both Static and Instance methods

27

Every-day Use: OpenEdge.Net.HTTP.*

28

What to Expect

29

What to Expect

 Adopt PDSOE for your IDE

 The auto-complete and class-viewer are invaluable

 At minimum, use an IDE that performs color-coding and syntax checks

 Confusion – Move at a comfortable pace for you

 Start simple

 Move deeper into OOP as your understanding increases

 Learn using good examples

 Reference libraries will change between versions

 Acquire the source and actually look at it

 Compare the source between versions

– Compilations will let you know if things are *broken*, you will want to confirm the behavior
hasn't changed beyond your expectations

30

Next Steps

 Create your own custom override classes
 Explore use of overloads to simplify call signature

 Interfaces, Abstract classes

 JSON
 Progress.JSON.*

 Enumerators
 Progress.Lang.Enum

 OpenEdge.Core.*Enum

 Runtime Application Framework

 CCS-style

31

Next Steps

 Next-level OOP design recommendations

 CCS Samples: https://github.com/consultingwerk/CCS_Samples

 IOC, Dependency Injection: https://github.com/PeterJudge-PSC/InjectABL

 AutoEdge, The Factory: https://github.com/PeterJudge-PSC/autoedgethefactory

 (2016) 806: OO-Oh, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2016/806 - OO-Oh.pdf

 (2018) 326: Building Great Interfaces with OOABL, Mike Fechner, Consultingwerk, Ltd.

 http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF

 Sessions by Peter Judge

 excellent resources – couldn’t find links :(

 OE Dev Tools Source

 Progress Community Website

 https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_
5F00_tools

https://github.com/consultingwerk/CCS_Samples
file:///home/cthomson/Documents/psc/pugna_2019/everydayoop/NULL
https://github.com/PeterJudge-PSC/autoedgethefactory
http://pugchallenge.org/downloads2016/806%20-%20OO-Oh.pdf
http://pugchallenge.org/downloads2018/Fechner_OOABL.PDF
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/tags/development_5F00_tools

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

